samedi 29 juillet 2023

Efficacité comparative des interventions en milieu scolaire sur la condition physique des enfants et des adolescents : revue systématique et méta-analyse en réseau

Aperçu: G.M.

Contexte
Les écoles offrent un cadre favorable à l'éducation à la santé, mais le mode d'exercice scolaire le plus efficace pour améliorer la condition physique n'est pas encore clairement défini. Cette méta-analyse en réseau a été conçue pour évaluer et classer l'efficacité comparative de six modalités d'exercice sur les indicateurs de condition physique en milieu scolaire.

Méthodes
Une recherche en ligne a été effectuée dans les bases de données Web of Science, PubMed, SPORTDiscus et Scopus. Les essais contrôlés randomisés et quasi-randomisés ont été pris en compte. Les résultats comprenaient des mesures de l'anthropométrie et de la composition corporelle, de la condition musculaire et de la condition cardiorespiratoire. Les données ont été regroupées à l'aide d'un modèle à effets aléatoires utilisant le cadre fréquentiste.

Résultats
Au total, 66 études portant sur 8 578 participants (48 % de filles) ont été incluses.

  • L'entraînement par intervalles de haute intensité était l'intervention la plus efficace pour réduire l'indice de masse corporelle (différence moyenne (DM) = -0,60 kg-m-2, intervalle de confiance à 95 % (IC 95 %) = -1,04 à -0,15, p = 0,009), augmenter la VO2max (DM = 3,59 ml-kg-1-min-1, IC 95 % = 2,45 à 4,74, p < 0,001) et la performance au sprint sur 20 mètres (DM = -0,35 s, IC 95 % = -0,55 à -0,14, p = 0,001). 
  • L'entraînement aérobique avait la plus forte probabilité de réduire le tour de taille (différence moyenne standardisée (DMS) = -0,60, IC à 95 % = -0,88 à -0,32, p < 0,001). 
  • Les jeux vidéo actifs sont apparus comme une modalité prometteuse pour améliorer le saut en contre-mouvement (MD = 2,43 cm, IC à 95 % = 0,06 à 4,80, p = 0,041) et les performances en course navette (SMD = 0,86, IC à 95 % = 0,29 à 1,43, p = 0,003).
  • L'entraînement musculaire était le meilleur mode d'exercice pour améliorer la performance en saut en longueur (DMS = 1,03, IC 95 % = 0,07 à 1,98, p = 0,035), tandis que
  • l'entraînement combiné était le meilleur pour réduire le pourcentage de graisse corporelle (DMS = -2,56 %, IC 95 % = -4,73 à -0,40, p = 0,022) et augmenter le nombre de répétitions de pompes (DMS = 3,59, IC 95 % = 0,81 à 6,37, p = 0,012).

Conclusion
Les programmes d'exercice physique en milieu scolaire ont de multiples effets sur la condition physique. Les résultats de cette étude contribueront à informer les professeurs d'éducation physique et les entraîneurs sur la meilleure façon d'offrir des programmes d'exercices dans un cadre scolaire.
L'étude étant limitée par la recherche initiale, les conclusions devront être vérifiées plus avant à l'aide d'essais contrôlés randomisés de haute qualité.

Cliquer ICI pour accéder à l'intégralité de l'article en anglais

Comparative effectiveness of school-based exercise interventions on physical fitness in children and adolescents: a systematic review and network meta-analysis 

Affiliations
Free PMC article

Abstract

Background: Schools provide a favorable setting for health education, however, the most effective school-based exercise mode for improving physical fitness remains unclear. This network meta-analysis was designed to assess and rank the comparative efficacy of six exercise modalities on physical fitness indicators in a school-based setting.

Methods: An online search of the Web of Science, PubMed, SPORTDiscus, and Scopus databases was conducted. Randomized and quasi-randomized controlled trials were considered. Outcomes included measures of anthropometry and body composition, muscular fitness, and cardiorespiratory fitness. Data were pooled with a random effects model using the frequentist framework.

Results: A total of 66 studies with 8,578 participants (48% girls) were included. High-intensity interval training was the most effective intervention reducing body mass index (mean difference (MD) = -0.60 kg·m-2, 95% confidence interval (95%CI) = -1.04 to -0.15, p = 0.009), elevating VO2max (MD = 3.59 mL·kg-1·min-1, 95% CI = 2.45 to 4.74, p < 0.001), and 20-meter sprint performance (MD = -0.35 s, 95% CI = -0.55 to -0.14, p = 0.001). Aerobic training had the highest probability of reducing waist circumference (standardized mean difference (SMD) = -0.60, 95% CI = -0.88 to -0.32, p < 0.001). Active video games emerged as a promising modality for improving countermovement jump (MD = 2.43 cm, 95% CI = 0.06 to 4.80, p = 0.041) and shuttle running performance (SMD = 0.86, 95% CI = 0.29 to 1.43, p = 0.003). Strength training was the best exercise mode for improving standing long jump performance (SMD = 1.03, 95% CI = 0.07 to 1.98, p = 0.035) while combined training was rated the first for decreasing body fat percent (MD = -2.56%, 95% CI = -4.73 to -0.40, p = 0.022) and increasing push-up repetitions (SMD = 3.59, 95% CI = 0.81 to 6.37, p = 0.012).

Conclusion: School-based exercise interventions have multiple effects on physical fitness. The findings of this study will help to inform physical education teachers and coaches how best to deliver exercise programs in a school setting. Since the study was limited by the original research, the conclusions will require further verification using high-quality randomized controlled trials.

Systematic review registration: PROSPERO, Identifier: CRD42023401963.

Keywords: adolescents; children; network meta-analysis; physical fitness; school-based exercise.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 2
Figure 3

References

    1. Hills AP, Andersen LB, Byrne NM. Physical activity and obesity in children. Br J Sports Med. (2011) 45:866–70. doi: 10.1136/bjsports-2011-090199 - DOI - PubMed
    1. Smith JJ, Eather N, Morgan PJ, Plotnikoff RC, Faigenbaum AD, Lubans DR. The health benefits of muscular fitness for children and adolescents: a systematic review and meta-analysis. Sports Med. (2014) 44:1209–23. doi: 10.1007/s40279-014-0196-4, PMID: - DOI - PubMed
    1. Dwyer T, Magnussen CG, Schmidt MD, Ukoumunne OC, Ponsonby AL, Raitakari OT, et al. . Decline in physical fitness from childhood to adulthood associated with increased obesity and insulin resistance in adults. Diabetes Care. (2009) 32:683–7. doi: 10.2337/dc08-1638, PMID: - DOI - PMC - PubMed
    1. Tapia-Serrano MA, Sevil-Serrano J, Sánchez-Miguel PA, López-Gil JF, Tremblay MS, García-Hermoso A. Prevalence of meeting 24-hour movement guidelines from pre-school to adolescence: a systematic review and meta-analysis including 387,437 participants and 23 countries. J Sport Health Sci. (2022) 11:427–37. doi: 10.1016/j.jshs.2022.01.005, PMID: - DOI - PMC - PubMed
    1. Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet child Adolesc. Health. (2020) 4:23–35. doi: 10.1016/S2352-4642(19)30323-2, PMID: - DOI - PMC - PubMed
    1. Sénéchal M, Hebert JJ, Fairchild TJ, Møller NC, Klakk H, Wedderkopp N. Vigorous physical activity is important in maintaining a favourable health trajectory in active children: the CHAMPS study-DK. Sci Rep. (2021) 11:19211. doi: 10.1038/s41598-021-98731-0, PMID: - DOI - PMC - PubMed
    1. Sun C, Pezic A, Tikellis G, Ponsonby AL, Wake M, Carlin JB, et al. . Effects of school-based interventions for direct delivery of physical activity on fitness and cardiometabolic markers in children and adolescents: a systematic review of randomized controlled trials. Obes Rev. (2013) 14:818–38. doi: 10.1111/obr.12047, PMID: - DOI - PubMed
    1. Fox KR, Cooper A, McKenna J. The school and promotion of children’s health-enhancing physical activity: perspectives from the United Kingdom. J Teach Phys Educ. (2004) 23:338–58. doi: 10.1123/jtpe.23.4.338 - DOI
    1. Love R, Adams J, van Sluijs EMF. Are school-based physical activity interventions effective and equitable? A meta-analysis of cluster randomized controlled trials with accelerometer-assessed activity. Obes Rev. (2019) 20:859–70. doi: 10.1111/obr.12823, PMID: - DOI - PMC - PubMed
    1. Pozuelo-Carrascosa DP, García-Hermoso A, Álvarez-Bueno C, Sánchez-López M, Martinez-Vizcaino V. Effectiveness of school-based physical activity programmes on cardiorespiratory fitness in children: a meta-analysis of randomised controlled trials. Br J Sports Med. (2018) 52:1234–40. doi: 10.1136/bjsports-2017-097600, PMID: - DOI - PubMed
    1. Minatto G, Barbosa Filho VC, Berria J, Petroski EL. School-based interventions to improve cardiorespiratory fitness in adolescents: systematic review with Meta-analysis. Sports Med. (2016) 46:1273–92. doi: 10.1007/s40279-016-0480-6, PMID: - DOI - PubMed
    1. Lin J, Zhang R, Shen J, Zhou A. Effects of school-based neuromuscular training on fundamental movement skills and physical fitness in children: a systematic review. PeerJ. (2022) 10:e13726. doi: 10.7717/peerj.13726, PMID: - DOI - PMC - PubMed
    1. Duncombe SL, Barker AR, Bond B, Earle R, Varley-Campbell J, Vlachopoulos D, et al. . School-based high-intensity interval training programs in children and adolescents: a systematic review and meta-analysis. PLoS One. (2022) 17:e0266427. doi: 10.1371/journal.pone.0266427, PMID: - DOI - PMC - PubMed
    1. Bauer N, Sperlich B, Holmberg HC, Engel FA. Effects of high-intensity interval training in school on the physical performance and health of children and adolescents: a systematic review with Meta-analysis. Sports Med Open. (2022) 8:50. doi: 10.1186/s40798-022-00437-8, PMID: - DOI - PMC - PubMed
    1. Podnar H, Jurić P, Karuc J, Saez M, Barceló MA, Radman I, et al. . Comparative effectiveness of school-based interventions targeting physical activity, physical fitness or sedentary behaviour on obesity prevention in 6- to 12-year-old children: a systematic review and meta-analysis. Obes Rev. (2021) 22:e13160. doi: 10.1111/obr.13160, PMID: - DOI - PubMed
    1. Gao Z, Chen S. Are field-based exergames useful in preventing childhood obesity? A systematic review. Obes Rev. (2014) 15:676–91. doi: 10.1111/obr.12164, PMID: - DOI - PubMed
    1. Oliveira CB, Pinto RZ, Saraiva BTC, Tebar WR, Delfino LD, Franco MR, et al. . Effects of active video games on children and adolescents: a systematic review with meta-analysis. Scand J Med Sci Sports. (2020) 30:4–12. doi: 10.1111/sms.13539, PMID: - DOI - PubMed
    1. Hill-Haas SV, Dawson B, Impellizzeri FM, Coutts AJ. Physiology of small-sided games training in football: a systematic review. Sports Med. (2011) 41:199–220. doi: 10.2165/11539740-000000000-00000 - DOI - PubMed
    1. Su X, McDonough DJ, Chu H, Quan M, Gao Z. Application of network meta-analysis in the field of physical activity and health promotion. J Sport Health Sci. (2020) 9:511–20. doi: 10.1016/j.jshs.2020.07.011, PMID: - DOI - PMC - PubMed
    1. Hutton B, Salanti G, Caldwell D, Chaimani A, Schmid CH, Cameron C, et al. . The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analysis of health care interventions: checklist and explanations. Ann Intern Med. (2015) 162:777–84. doi: 10.7326/M14-2385, PMID: - DOI - PubMed
    1. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. . Cochrane statistical methods group. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. (2011) 343:d5928. doi: 10.1136/bmj.d5928, PMID: - DOI - PMC - PubMed
    1. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, et al. . Cochrane handbook for systematic reviews of interventions. 2nd ed. Chichester (UK): John Wiley & Sons; (2019).
    1. White IR. Network meta-analysis. Stata J. (2015) 15:951–85. doi: 10.1177/1536867X1501500403 - DOI
    1. Lau PW, Wang JJ, Maddison R. A randomized-controlled trial of school-based active videogame intervention on Chinese Children's aerobic fitness, physical activity level, and psychological correlates. Games Health J. (2016) 5:405–12. doi: 10.1089/g4h.2016.0057, PMID: - DOI - PubMed
    1. Liang Y, Lau PWC, Jiang Y, Maddison R. Getting active with active video games: a quasi-experimental study. Int J Environ Res Public Health. (2020) 17:7984. doi: 10.3390/ijerph17217984, PMID: - DOI - PMC - PubMed
    1. Ketelhut S, Roglin L, Martin-Niedecken AL, Nigg CR, Ketelhut K. Integrating regular exergaming sessions in the Exer cube into a school setting increases physical fitness in elementary school children: a randomized controlled trial. J Clin Med. (2022) 11:1570. doi: 10.3390/jcm11061570 - DOI - PMC - PubMed
    1. Comeras-Chueca C, Villalba-Heredia L, Perez-Lasierra JL, Marín-Puyalto J, Lozano-Berges G, Matute-Llorente Á, et al. . Active video games improve muscular fitness and motor skills in children with overweight or obesity. Int J Environ Res Public Health. (2022) 19:2642. doi: 10.3390/ijerph19052642, PMID: - DOI - PMC - PubMed
    1. Ye S, Lee JE, Stodden DF, Gao Z. Impact of exergaming on Children's motor skill competence and health-related fitness: a quasi-experimental study. J Clin Med. (2018) 7:261. doi: 10.3390/jcm7090261, PMID: - DOI - PMC - PubMed
    1. Comeras-Chueca C, Villalba-Heredia L, Perez-Lasierra JL, Lozano-Berges G, Matute-Llorente A, Vicente-Rodriguez G, et al. . Effect of an active video game intervention combined with multicomponent exercise for cardiorespiratory fitness in children with overweight and obesity: randomized controlled trial. JMIR Serious Games. (2022) 10:e33782. doi: 10.2196/33782, PMID: - DOI - PMC - PubMed
    1. Chen H, Sun H. Effects of active videogame and sports, play, and active recreation for kids physical education on Children's health-related fitness and enjoyment. Games Health J. (2017) 6:312–8. doi: 10.1089/g4h.2017.0001, PMID: - DOI - PubMed
    1. Lau PW, Wang G, Wang JJ. Effectiveness of active video game usage on body composition, physical activity level and motor proficiency in children with intellectual disability. J Appl Res Intellect Disabil. (2020) 33:1465–77. doi: 10.1111/jar.12774, PMID: - DOI - PubMed
    1. Petrusic T, Trajkovic N, Bogataj S. Twelve-week game-based school intervention improves physical fitness in 12-14-year-old girls. Front Public Health. (2022) 10:831424. doi: 10.3389/fpubh.2022.831424, PMID: - DOI - PMC - PubMed
    1. Trajkovic N, Lazic A, Trkulja-Petkovic D, Barišić V, Milić V, Nikolić S, et al. . Effects of after-school volleyball program on body composition in overweight adolescent girls. Children. (2021) 9:21. doi: 10.3390/children9010021, PMID: - DOI - PMC - PubMed
    1. Trajkovic N, Pajek M, Sporis G, Petrinović L, Bogataj Š. Reducing aggression and improving physical fitness in adolescents through an after-school volleyball program. Front Psychol. (2020) 11:2081. doi: 10.3389/fpsyg.2020.02081, PMID: - DOI - PMC - PubMed
    1. Trajkovic N, Madic DM, Milanovic Z, Mačak D, Padulo J, Krustrup P, et al. . Eight months of school-based soccer improves physical fitness and reduces aggression in high-school children. Biol Sport. (2020) 37:185–93. doi: 10.5114/biolsport.2020.94240, PMID: - DOI - PMC - PubMed
    1. Cvetkovic N, Stojanovic E, Stojiljkovic N, Nikolić D, Scanlan AT, Milanović Z. Exercise training in overweight and obese children: recreational football and high-intensity interval training provide similar benefits to physical fitness. Scand J Med Sci Sports. (2018) 28:18–32. doi: 10.1111/sms.13241, PMID: - DOI - PubMed
    1. Larsen MN, Nielsen CM, Ørntoft C, Randers MB, Helge EW, Madsen M, et al. . Fitness effects of 10-month frequent Low-volume ball game training or interval running for 8-10-year-old school children. Biomed Res Int. (2017) 2017:2719752. doi: 10.1155/2017/2719752, PMID: - DOI - PMC - PubMed
    1. Latorre-Roman PA, Mora-Lopez D, Garcia-Pinillos F. Effects of a physical activity programme in the school setting on physical fitness in preschool children. Child Care Health Dev. (2018) 44:427–32. doi: 10.1111/cch.12550 - DOI - PubMed
    1. Krustrup P, Hansen PR, Nielsen CM, Larsen MN, Randers MB, Manniche V, et al. . Structural and functional cardiac adaptations to a 10-week school-based football intervention for 9-10-year-old children. Scand J Med Sci Sports. (2014) 24:4–9. doi: 10.1111/sms.12277, PMID: - DOI - PubMed
    1. Skoradal MB, Purkhús E, Steinholm H, Olsen MH, Ørntoft C, Larsen MN, et al. . "FIFA 11 for health" for Europe in the Faroe Islands: effects on health markers and physical fitness in 10- to 12-year-old schoolchildren. Scand J Med Sci Sports. (2018) 28:8–17. doi: 10.1111/sms.13209, PMID: - DOI - PubMed
    1. Larsen MN, Nielsen CM, Helge EW, Madsen M, Manniche V, Hansen L, et al. . Positive effects on bone mineralisation and muscular fitness after 10 months of intense school-based physical training for children aged 8-10 years: the FIT FIRST randomised controlled trial. Br J Sports Med. (2018) 52:254–60. doi: 10.1136/bjsports-2016-096219, PMID: - DOI - PMC - PubMed
    1. Ryom K, Christiansen SR, Elbe AM, Aggestrup CS, Madsen EE, Madsen M, et al. . The Danish "11 for health" program raises health knowledge, well-being, and fitness in ethnic minority 10- to 12-year-olds. Scand J Med Sci Sports. (2022) 32:138–51. doi: 10.1111/sms.14057, PMID: - DOI - PubMed
    1. Camacho-Cardenosa A, Brazo-Sayavera J, Camacho-Cardenosa M, Marcos-Serrano M, Timón R, Olcina G. Effects of high intensity interval training on fat mass parameters in adolescents. Rev Esp Salud Publica. (2016) 90:e1–9. PMID: - PubMed
    1. Cao M, Tang Y, Zou Y. Integrating high-intensity interval training into a school setting improve body composition, cardiorespiratory fitness and physical activity in children with obesity: a randomized controlled trial. J Clin Med. (2022) 11:5436. doi: 10.3390/jcm11185436, PMID: - DOI - PMC - PubMed
    1. Delgado-Floody P, Espinoza-Silva M, Garcia-Pinillos F, Latorre-Román P. Effects of 28 weeks of high-intensity interval training during physical education classes on cardiometabolic risk factors in Chilean schoolchildren: a pilot trial. Eur J Pediatr. (2018) 177:1019–27. doi: 10.1007/s00431-018-3149-3, PMID: - DOI - PubMed
    1. Martin R, Buchan DS, Baker JS, Young J, Sculthorpe N, Grace FM. Sprint interval training (SIT) is an effective method to maintain cardiorespiratory fitness (CRF) and glucose homeostasis in Scottish adolescents. Biol Sport. (2015) 32:307–13. doi: 10.5604/20831862.1173644, PMID: - DOI - PMC - PubMed
    1. Martin-Smith R, Buchan DS, Baker JS, Macdonald MJ, Sculthorpe NF, Easton C, et al. . Sprint interval training and the school curriculum: benefits upon cardiorespiratory fitness, physical activity profiles, and Cardiometabolic risk profiles of healthy adolescents. Pediatr Exerc Sci. (2019) 31:296–305. doi: 10.1123/pes.2018-0155, PMID: - DOI - PubMed
    1. Martinez-Vizcaino V, Soriano-Cano A, Garrido-Miguel M, Cavero-Redondo I, Medio EP, Madrid VM, et al. . The effectiveness of a high-intensity interval games intervention in schoolchildren: a cluster-randomized trial. Scand J Med Sci Sports. (2022) 32:765–81. doi: 10.1111/sms.14113, PMID: - DOI - PubMed
    1. Meng C, Yucheng T, Shu L, Yu Z. Effects of school-based high-intensity interval training on body composition, cardiorespiratory fitness and cardiometabolic markers in adolescent boys with obesity: a randomized controlled trial. BMC Pediatr. (2022) 22:112. doi: 10.1186/s12887-021-03079-z, PMID: - DOI - PMC - PubMed
    1. Alonso-Fernández D, Fernández-Rodríguez R, Taboada-Iglesias Y, Gutiérrez-Sánchez A. Impact of a HIIT protocol on body composition and VO2max in adolescents. Sci Sports. (2019) 34:341–7. doi: 10.1016/j.scispo.2019.04.001 - DOI
    1. Bogataj Š, Trajković N, Cadenas-Sanchez C, Sember V. Effects of school-based exercise and nutrition intervention on body composition and physical fitness in overweight adolescent girls. Nutrients. (2021) 13:238. doi: 10.3390/nu13010238, PMID: - DOI - PMC - PubMed
    1. Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Pollock E, Kennedy SG, et al. . Preliminary efficacy and feasibility of embedding high intensity interval training into the school day: a pilot randomized controlled trial. Prev Med Rep. (2015) 2:973–9. doi: 10.1016/j.pmedr.2015.11.001, PMID: - DOI - PMC - PubMed
    1. Martínez SR, Ríos LJC, Tamayo IM, Almedia LG, López-Gomez MA, Jara CC. An after-school, high-intensity, interval physical activity programme improves health-related fitness in children. Motriz Revista de Educação Física. (2016) 22:359–67. doi: 10.1590/S1980-6574201600040022 - DOI
    1. Engel FA, Wagner MO, Schelhorn F, Deubert F, Leutzsch S, Stolz A, et al. . Classroom-based Micro-sessions of functional high-intensity circuit training enhances functional strength but not cardiorespiratory fitness in school children-a feasibility study. Front Public Health. (2019) 7:291. doi: 10.3389/fpubh.2019.00291, PMID: - DOI - PMC - PubMed
    1. Lambrick D, Westrupp N, Kaufmann S, Stoner L, Faulkner J. The effectiveness of a high-intensity games intervention on improving indices of health in young children. J Sports Sci. (2016) 34:190–8. doi: 10.1080/02640414.2015.1048521, PMID: - DOI - PubMed
    1. Baquet G, Gamelin FX, Mucci P, Thévenet D, Van Praagh E, Berthoin S. Continuous vs. interval aerobic training in 8- to 11-year-old children. J Strength Cond Res. (2010) 24:1381–8. doi: 10.1519/JSC.0b013e3181d1575a, PMID: - DOI - PubMed
    1. Baquet G, Guinhouya C, Dupont G, Nourry C, Berthoin S. Effects of a short-term interval training program on physical fitness in prepubertal children. J Strength Cond Res. (2004) 18:708–13. doi: 10.1519/13813.1, PMID: - DOI - PubMed
    1. Gamelin FX, Baquet G, Berthoin S, Thevenet D, Nourry C, Nottin S, et al. . Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur J Appl Physiol. (2009) 105:731–8. doi: 10.1007/s00421-008-0955-8, PMID: - DOI - PubMed
    1. Leahy AA, Eather N, Smith JJ, Hillman CH, Morgan PJ, Plotnikoff RC, et al. . Feasibility and preliminary efficacy of a teacher-facilitated high-intensity interval training intervention for older adolescents. Pediatr Exerc Sci. (2019) 31:107–17. doi: 10.1123/pes.2018-0039, PMID: - DOI - PubMed
    1. McNarry MA, Winn CON, Davies GA, Eddolls WTB, Mackintosh KA. Effect of high-intensity training and asthma on the VO2 kinetics of adolescents. Med Sci Sports Exerc. (2020) 52:1322–9. doi: 10.1249/MSS.0000000000002270, PMID: - DOI - PubMed
    1. Racil G, Ben Ounis O, Hammouda O, Kallel A, Zouhal H, Chamari K, et al. . Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur J Appl Physiol. (2013) 113:2531–40. doi: 10.1007/s00421-013-2689-5, PMID: - DOI - PubMed
    1. Racil G, Coquart JB, Elmontassar W, Haddad M, Goebel R, Chaouachi A, et al. . Greater effects of high-compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol Sport. (2016) 33:145–52. doi: 10.5604/20831862.1198633, PMID: - DOI - PMC - PubMed
    1. Harris N, Warbrick I, Atkins D, Vandal A, Plank L, Lubans DR. Feasibility and provisional efficacy of embedding high-intensity interval training into physical education lessons: a pilot cluster-randomized controlled trial. Pediatr Exerc Sci. (2021) 33:186–95. doi: 10.1123/pes.2020-0255, PMID: - DOI - PubMed
    1. Jurić P, Dudley DA, Petocz P. Does incorporating high intensity interval training in physical education classes improve fitness outcomes of students? A cluster randomized controlled trial. Prev Med Rep. (2023) 32:102127. doi: 10.1016/j.pmedr.2023.102127, PMID: - DOI - PMC - PubMed
    1. Cataldi S, Francavilla VC, Bonavolonta V, De Florio O, Carvutto R, De Candia M, et al. . Proposal for a fitness program in the school setting during the COVID 19 pandemic: effects of an 8-week cross fit program on psychophysical well-being in healthy adolescents. Int J Environ Res Public Health. (2021) 18:3141. doi: 10.3390/ijerph18063141, PMID: - DOI - PMC - PubMed
    1. Cohen DD, Sandercock GR, Camacho PA, Otero-Wandurraga J, Romero SMP, Marín RDPM, et al. . The SIMAC study: a randomized controlled trial to compare the effects of resistance training and aerobic training on the fitness and body composition of Colombian adolescents. PLoS One. (2021) 16:e0248110. doi: 10.1371/journal.pone.0248110, PMID: - DOI - PMC - PubMed
    1. Yoshimoto T, Takai Y, Fukunaga Y, Fujita E, Yamamoto M, Kanehisa H. Effects of school-based squat training in adolescent girls. J Sports Med Phys Fitness. (2016) 56:678–83. PMID: - PubMed
    1. Alves AR, Marta CC, Neiva HP, Izquierdo M, Marques MC. Concurrent training in prepubescent children: the effects of 8 Weeks of strength and aerobic training on explosive strength and VO2max. J Strength Cond Res. (2016) 30:2019–32. doi: 10.1519/JSC.0000000000001294 - DOI - PubMed
    1. Santos A, Marinho DA, Costa AM, Izquierdo M, Marques MC. The effects of concurrent resistance and endurance training follow a specific detraining cycle in young school girls. J Hum Kinet. (2011) 29A:93–103. doi: 10.2478/v10078-011-0064-3, PMID: - DOI - PMC - PubMed
    1. Dorgo S, King GA, Candelaria NG, Bader JO, Brickey GD, Adams CE. The effects of manual resistance training on fitness in adolescents. J Strength Cond Res. (2009) 23:2287–94. doi: 10.1519/JSC.0b013e3181b8d42a - DOI - PMC - PubMed
    1. Santos AP, Marinho DA, Costa AM, Izquierdo M, Marques MC. The effects of concurrent resistance and endurance training follow a detraining period in elementary school students. J Strength Cond Res. (2012) 26:1708–16. doi: 10.1519/JSC.0b013e318234e872, PMID: - DOI - PubMed
    1. Kennedy SG, Smith JJ, Morgan PJ, Peralta LR, Hilland TA, Eather N, et al. . Implementing resistance training in secondary schools: a cluster randomized controlled trial. Med Sci Sports Exerc. (2018) 50:62–72. doi: 10.1249/MSS.0000000000001410, PMID: - DOI - PubMed
    1. Eather N, Morgan PJ, Lubans DR. Improving health-related fitness in adolescents: the cross fit teens randomised controlled trial. J Sports Sci. (2016) 34:209–23. doi: 10.1080/02640414.2015.1045925, PMID: - DOI - PubMed
    1. Zhao M, Liu S, Han X, Li Z, Liu B, Chen J, et al. . School-based comprehensive strength training interventions to improve muscular fitness and perceived physical competence in Chinese male adolescents. Biomed Res Int. (2022) 2022:7464815–14. doi: 10.1155/2022/7464815, PMID: - DOI - PMC - PubMed
    1. Muehlbauer T, Gollhofer A, Granacher U. Sex-related effects in strength training during adolescence: a pilot study. Percept Mot Skills. (2012) 115:953–68. doi: 10.2466/06.10.30, PMID: - DOI - PubMed
    1. Alves AR, Marta CC, Neiva HP, Izquierdo M, Marques MC. Effects of order and sequence of resistance and endurance training on body fat in elementary school-aged girls. Biol Sport. (2017) 34:379–84. doi: 10.5114/biolsport.2017.69826, PMID: - DOI - PMC - PubMed
    1. Lubans DR, Sheaman C, Callister R. Exercise adherence and intervention effects of two school-based resistance training programs for adolescents. Prev Med. (2010) 50:56–62. doi: 10.1016/j.ypmed.2009.12.003, PMID: - DOI - PubMed
    1. Granacher U, Goesele A, Roggo K, Wischer T, Fischer S, Zuerny C, et al. . Effects and mechanisms of strength training in children. Int J Sports Med. (2011) 32:357–64. doi: 10.1055/s-0031-1271677 - DOI - PubMed
    1. Winwood PW, Buckley JJ. Short-term effects of resistance training modalities on performance measures in male adolescents. J Strength Cond Res. (2019) 33:641–50. doi: 10.1519/JSC.0000000000001992, PMID: - DOI - PubMed
    1. Marta C, Alves AR, Esteves PT, Casanova N, Marinho D, Neiva HP, et al. . Effects of suspension versus traditional resistance training on explosive strength in elementary school-aged boys. Pediatr Exerc Sci. (2019) 31:473–8. doi: 10.1123/pes.2018-0287 - DOI - PubMed
    1. Robinson KJ, Lubans DR, Mavilidi MF, Hillman CH, Benzing V, Valkenborghs SR, et al. . Effects of classroom-based resistance training with and without cognitive training on Adolescents' cognitive function, on-task behavior, and muscular fitness. Front Psychol. (2022) 13:811534. doi: 10.3389/fpsyg.2022.811534, PMID: - DOI - PMC - PubMed
    1. Velez A, Golem DL, Arent SM. The impact of a 12-week resistance training program on strength, body composition, and self-concept of Hispanic adolescents. J Strength Cond Res. (2010) 24:1065–73. doi: 10.1519/JSC.0b013e3181cc230a, PMID: - DOI - PubMed
    1. Sun MX, Huang XQ, Yan Y, Li BW, Zhong WJ, Chen JF, et al. . One-hour after-school exercise ameliorates central adiposity and lipids in overweight Chinese adolescents: a randomized controlled trial. Chin Med J. (2011) 124:323–9. PMID: - PubMed
    1. van der Fels IMJ, Hartman E, Bosker RJ, de Greeff JW, de Bruijn AGM, Meijer A, et al. . Effects of aerobic exercise and cognitively engaging exercise on cardiorespiratory fitness and motor skills in primary school children: a cluster randomized controlled trial. J Sports Sci. (2020) 38:1975–83. doi: 10.1080/02640414.2020.1765464, PMID: - DOI - PubMed
    1. Tan S, Chen C, Sui M, Xue L, Wang J. Exercise training improved body composition, cardiovascular function, and physical fitness of 5-year-old children with obesity or Normal body mass. Pediatr Exerc Sci. (2017) 29:245–53. doi: 10.1123/pes.2016-0107 - DOI - PubMed
    1. Walther C, Gaede L, Adams V, Gelbrich G, Leichtle A, Erbs S, et al. . Effect of increased exercise in school children on physical fitness and endothelial progenitor cells: a prospective randomized trial. Circulation. (2009) 120:2251–9. doi: 10.1161/CIRCULATIONAHA.109.865808, PMID: - DOI - PubMed
    1. Song JK, Stebbins CL, Kim TK, Kim HB, Kang HJ, Chai JH. Effects of 12 weeks of aerobic exercise on body composition and vascular compliance in obese boys. J Sports Med Phys Fitness. (2012) 52:522–9. PMID: - PubMed
    1. Cohen DD, Carreño J, Camacho PA, Otero J, Martinez D, Lopez-Lopez J, et al. . Fitness changes in adolescent girls following in-school combined aerobic and resistance exercise: interaction with birthweight. Pediatr Exerc Sci. (2022) 34:76–83. doi: 10.1123/pes.2021-0034, PMID: - DOI - PubMed
    1. Wong PC, Chia MY, Tsou IY, Wansaicheong GK, Tan B, Wang JC, et al. . Effects of a 12-week exercise training programme on aerobic fitness, body composition, blood lipids and C-reactive protein in adolescents with obesity. Ann Acad Med Singap. (2008) 37:286–93. doi: 10.47102/annals-acadmedsg.V37N4p286, PMID: - DOI - PubMed
    1. Liu J, Zhu L, Su Y. Comparative effectiveness of high-intensity interval training and moderate-intensity continuous training for Cardiometabolic risk factors and cardiorespiratory fitness in childhood obesity: a Meta-analysis of randomized controlled trials. Front Physiol. (2020) 11:214. doi: 10.3389/fphys.2020.00214, PMID: - DOI - PMC - PubMed
    1. Utesch T, Dreiskämper D, Naul R, Geukes K. Understanding physical (in-) activity, overweight, and obesity in childhood: effects of congruence between physical self-concept and motor competence. Sci Rep. (2018) 8:5908. doi: 10.1038/s41598-018-24139-y, PMID: - DOI - PMC - PubMed
    1. Millstein RA. Measuring outcomes in adult weight loss studies that include diet and physical activity: a systematic review. J Nutr Metab. (2014) 2014:421423. doi: 10.1155/2014/421423, PMID: - DOI - PMC - PubMed
    1. Batrakoulis A, Jamurtas AZ, Metsios GS, Perivoliotis K, Liguori G, Feito Y, et al. . Comparative efficacy of 5 exercise types on Cardiometabolic health in overweight and obese adults: a systematic review and network Meta-analysis of 81 randomized controlled trials. Circ Cardiovasc Qual Outcomes. (2022) 15:e008243. doi: 10.1161/CIRCOUTCOMES.121.008243, PMID: - DOI - PubMed
    1. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. (2006) 444:875–80. doi: 10.1038/nature05487 - DOI - PubMed
    1. de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. (2007) 28:850–6. doi: 10.1093/eurheartj/ehm026, PMID: - DOI - PubMed
    1. Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. (2015) 49:1253–61. doi: 10.1136/bjsports-2014-094490, PMID: - DOI - PubMed
    1. Yarizadeh H, Eftekhar R, Anjom-Shoae J, Speakman JR, Djafarian K. The effect of aerobic and resistance training and combined exercise modalities on subcutaneous abdominal fat: a systematic review and Meta-analysis of randomized clinical trials. Adv Nutr. (2021) 12:179–96. doi: 10.1093/advances/nmaa090, PMID: - DOI - PMC - PubMed
    1. Ho RS, Chan EK, Liu KK, Wong SH. Active video game on children and adolescents' physical activity and weight management: a network meta-analysis. Scand J Med Sci Sports. (2022) 32:1268–86. doi: 10.1111/sms.14176, PMID: - DOI - PubMed
    1. Gao Z, Zeng N, McDonough DJ, Su X. A systematic review of active video games on Youth's body composition and physical activity. Int J Sports Med. (2020) 41:561–73. doi: 10.1055/a-1152-4959, PMID: - DOI - PubMed
    1. García-Hermoso A, Ramírez-Campillo R, Izquierdo M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and Meta-analysis of longitudinal studies. Sports Med. (2019) 49:1079–94. doi: 10.1007/s40279-019-01098-6, PMID: - DOI - PubMed
    1. Villa-González E, Barranco-Ruiz Y, García-Hermoso A, Faigenbaum AD. Efficacy of school-based interventions for improving muscular fitness outcomes in children: a systematic review and meta-analysis. Eur J Sport Sci. (2023) 23:444–59. doi: 10.1080/17461391.2022.2029578, PMID: - DOI - PubMed
    1. Stricker PR, Faigenbaum AD, McCambridge TM, COUNCIL ON SPORTS MEDICINE AND FITNESS . Resistance training for children and adolescents. Pediatrics. (2020) 145:e20201011. doi: 10.1542/peds.2020-1011 - DOI - PubMed
    1. Peitz M, Behringer M, Granacher U. A systematic review on the effects of resistance and plyometric training on physical fitness in youth—what do comparative studies tell us? PLoS One. (2018) 13:e0205525. doi: 10.1371/journal.pone.0205525, PMID: - DOI - PMC - PubMed
    1. Nathan N, Elton B, Babic M, McCarthy N, Sutherland R, Presseau J, et al. . Barriers and facilitators to the implementation of physical activity policies in schools: a systematic review. Prev Med. (2018) 107:45–53. doi: 10.1016/j.ypmed.2017.11.012, PMID: - DOI - PubMed
    1. Oppici L, Stell FM, Utesch T, Woods CT, Foweather L, Rudd JR. A skill acquisition perspective on the impact of exergaming technology on foundational movement skill development in children 3-12 years: a systematic review and Meta-analysis. Sports Med Open. (2022) 8:148. doi: 10.1186/s40798-022-00534-8 - DOI - PMC - PubMed
    1. Liu W, Zeng N, McDonough DJ, Gao Z. Effect of active video games on healthy Children's fundamental motor skills and physical fitness: a systematic review. Int J Environ Res Public Health. (2020) 17:8264. doi: 10.3390/ijerph17218264, PMID: - DOI - PMC - PubMed
    1. Tompsett C, Sanders R, Taylor C, Cobley S. Pedagogical approaches to and effects of fundamental movement skill interventions on health outcomes: a systematic review. Sports Med. (2017) 47:1795–819. doi: 10.1007/s40279-017-0697-z, PMID: - DOI - PubMed
    1. Yang J, Christophi CA, Farioli A, Baur DM, Moffatt S, Zollinger TW, et al. . Association between push-up exercise capacity and future cardiovascular events among active adult men. JAMA Netw Open. (2019) 2:e188341. doi: 10.1001/jamanetworkopen.2018.8341, PMID: - DOI - PMC - PubMed
    1. Alberga AS, Prud'homme D, Sigal RJ, Goldfield GS, Hadjiyannakis S, Phillips P, et al. . Effects of aerobic training, resistance training, or both on cardiorespiratory and musculoskeletal fitness in adolescents with obesity: the HEARTY trial. Appl Physiol Nutr Metab. (2016) 41:255–65. doi: 10.1139/apnm-2015-0413 - DOI - PubMed
    1. Eather N, Riley N, Miller A, Smith V, Poole A, Vincze L, et al. . Efficacy and feasibility of HIIT training for university students: the Uni-HIIT RCT. J Sci Med Sport. (2019) 22:596–601. doi: 10.1016/j.jsams.2018.11.016, PMID: - DOI - PubMed
    1. McQuilliam SJ, Clark DR, Erskine RM, Brownlee TE. Free-weight resistance training in youth athletes: a narrative review. Sports Med. (2020) 50:1567–80. doi: 10.1007/s40279-020-01307-7, PMID: - DOI - PMC - PubMed
    1. Behm DG, Young JD, Whitten JHD, Reid JC, Quigley PJ, Low J, et al. . Effectiveness of traditional strength vs. power training on muscle strength, power and speed with youth: a systematic review and Meta-analysis. Front Physiol. (2017) 8:423. doi: 10.3389/fphys.2017.00423, PMID: - DOI - PMC - PubMed
    1. de Oliveira-Nunes SG, Castro A, Sardeli AV, Cavaglieri CR, MPT C-M. HIIT vs. SIT: what is the better to improve V˙O2max? A systematic review and Meta-analysis. Int J Environ Res Public Health. (2021) 18:13120. doi: 10.3390/ijerph182413120, PMID: - DOI - PMC - PubMed
    1. McKinlay BJ, Wallace P, Dotan R, Long D, Tokuno C, Gabriel DA, et al. . Effects of plyometric and resistance training on muscle strength, explosiveness, and neuromuscular function in Young adolescent soccer players. J Strength Cond Res. (2018) 32:3039–50. doi: 10.1519/JSC.0000000000002428, PMID: - DOI - PubMed
    1. Cormie P, McGuigan MR, Newton RU. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med Sci Sports Exerc. (2010) 42:1731–44. doi: 10.1249/MSS.0b013e3181d392e8, PMID: - DOI - PubMed
    1. Liao KF, Wang XX, Han MY, Li LL, Nassis GP, Li YM. Effects of velocity based training vs. traditional 1RM percentage-based training on improving strength, jump, linear sprint and change of direction speed performance: a systematic review with meta-analysis. PLoS One. (2021) 16:e0259790. doi: 10.1371/journal.pone.0259790, PMID: - DOI - PMC - PubMed
    1. Lema-Gómez L, Arango-Paternina CM, Eusse-López C, Petro J, Petro-Petro J, López-Sánchez M, et al. . Family aspects, physical fitness, and physical activity associated with mental-health indicators in adolescents. BMC Public Health. (2021) 21:2324. doi: 10.1186/s12889-021-12403-2, PMID: - DOI - PMC - PubMed
    1. Santana CCA, Azevedo LB, Cattuzzo MT, Hill JO, Andrade LP, Prado WL. Physical fitness and academic performance in youth: a systematic review. Scand J Med Sci Sports. (2017) 27:579–603. doi: 10.1111/sms.12773, PMID: - DOI - PubMed
    1. Raghuveer G, Hartz J, Lubans DR, Takken T, Wiltz JL, Mietus-Snyder M, et al. . Cardiorespiratory fitness in youth: an important marker of health: a scientific statement from the American Heart Association. Circulation. (2020) 142:e101–18. doi: 10.1161/CIR.0000000000000866, PMID: - DOI - PMC - PubMed
    1. Gripp F, Nava RC, Cassilhas RC, Esteves EA, Magalhães COD, Dias-Peixoto MF, et al. . HIIT is superior than MICT on cardiometabolic health during training and detraining. Eur J Appl Physiol. (2021) 121:159–72. doi: 10.1007/s00421-020-04502-6, PMID: - DOI - PubMed
    1. Menz V, Marterer N, Amin SB, Faulhaber M, Hansen AB, Lawley JS. Functional vs. running Low-volume high-intensity interval training: effects on VO2max and muscular endurance. J Sports Sci Med. (2019) 18:497–504. PMID: - PMC - PubMed
    1. Martland R, Mondelli V, Gaughran F, Stubbs B. Can high-intensity interval training improve physical and mental health outcomes? A meta-review of 33 systematic reviews across the lifespan. J Sports Sci. (2020) 38:430–69. doi: 10.1080/02640414.2019.1706829, PMID: - DOI - PubMed
    1. Batacan RB, Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. (2017) 51:494–503. doi: 10.1136/bjsports-2015-095841, PMID: - DOI - PubMed

 

Aucun commentaire:

Enregistrer un commentaire