dimanche 6 juin 2021

L'exposition directe de la tête au rayonnement thermique solaire altère les performances motrices et cognitives

Aperçu: G.M.

Les problèmes de santé et de performance provoqués par le stress thermique sont des défis sociétaux qui s'étendent géographiquement et s'intensifient avec le réchauffement climatique. Pourtant, la science sous-estime peut-être le véritable impact, car aucune étude n'a évalué les effets de l'exposition au soleil sur la température et le  fonctionnement du cerveau humain. 

En conséquence, les performances dans les tâches cognitives dominées et combinées motrices-cognitives et les marqueurs de l'augmentation de la température du tronc cérébral ont été évalués lors d'une exposition à la lumière solaire simulée (égale à ~ 1000 watts/m2). 

L'exposition aiguë n'a affecté aucune mesure de performance, tandis qu'une exposition prolongée de la tête et du cou a provoqué une élévation de la température centrale de 1 °C et des altérations significatives des performances cognitives et motrices. Il est important de noter que les déficiences sont apparues à des niveaux d'hyperthermie considérablement inférieurs par rapport aux expériences précédentes et aux essais de la présente étude sans chauffage radiant de la tête. 

Ces résultats soulignent l'importance d'inclure l'effet du rayonnement solaire sur la tête et le cou dans les futures évaluations scientifiques des impacts du stress thermique environnemental et de la protection spécifique de la tête afin de minimiser les effets néfastes.

Cliquer ICI pour accéder à l'intégralité de l'article en anglais

. 2020 May 8;10(1):7812.  doi: 10.1038/s41598-020-64768-w.

Direct exposure of the head to solar heat radiation impairs motor-cognitive performance

Affiliations
Free PMC article

Abstract

Health and performance impairments provoked by thermal stress are societal challenges geographically spreading and intensifying with global warming. Yet, science may be underestimating the true impact, since no study has evaluated effects of sunlight exposure on human brain temperature and function. Accordingly, performance in cognitively dominated and combined motor-cognitive tasks and markers of rising brainstem temperature were evaluated during exposure to simulated sunlight (equal to ~1000 watt/m2). Acute exposure did not affect any performance measures, whereas prolonged exposure of the head and neck provoked an elevation of the core temperature by 1 °C and significant impairments of cognitively dominated and motor task performances. Importantly, impairments emerged at considerably lower hyperthermia levels compared to previous experiments and to the trials in the presents study without radiant heating of the head. These findings highlight the importance of including the effect of sunlight radiative heating of the head and neck in future scientific evaluations of environmental heat stress impacts and specific protection of the head to minimize detrimental effects.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 2
Figure 3
Figure 4

Similar articles

Cited by 3 articles

References

    1. Flouris AD, et al. Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis. Lancet Planet. Health. 2018;2:e521–e531. doi: 10.1016/S2542-5196(18)30237-7. - DOI - PubMed
    1. Mora C, et al. Global risk of deadly heat. Nat. Clim. Change. 2017;7:501–506. doi: 10.1038/nclimate3322. - DOI
    1. Nybo, L., Rasmussen, P. & Sawka, M. N. Performance in the Heat—Physiological Factors of Importance for Hyperthermia-Induced Fatigue. Comprehensive Physiology 657–689, 10.1002/cphy.c130012 (2014). - PubMed
    1. Campbell S, Remenyi TA, White CJ, Johnston FH. Heatwave and health impact research: A global review. Health Place. 2018;53:210–218. doi: 10.1016/j.healthplace.2018.08.017. - DOI - PubMed
    1. Anderson GBrooke, Bell Michelle L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities. Environ. Health Perspect. 2011;119:210–218. doi: 10.1289/ehp.1002313. - DOI - PMC - PubMed
    1. Piil JF, Lundbye-Jensen J, Trangmar SJ, Nybo L. Performance in complex motor tasks deteriorates in hyperthermic humans. Temperature. 2017;4:420–428. doi: 10.1080/23328940.2017.1368877. - DOI - PMC - PubMed
    1. Gaoua N, Racinais S, Grantham J, El Massioui F. Alterations in cognitive performance during passive hyperthermia are task dependent. Int. J. Hyperth. 2011;27:1–9. doi: 10.3109/02656736.2010.516305. - DOI - PMC - PubMed
    1. Taylor, L., Watkins, S. L., Marshall, H., Dascombe, B. J. & Foster, J. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review. Front Physiol6 (2016). - PMC - PubMed
    1. Schmit C, Hausswirth C, Le Meur Y, Duffield R. Cognitive Functioning and Heat Strain: Performance Responses and Protective Strategies. Sports Med. 2017;47:1289–1302. doi: 10.1007/s40279-016-0657-z. - DOI - PubMed
    1. Ramsey JD, Morrissey SJ. Isodecrement curves for task performance in hot environments. Appl. Ergonomics. 1978;9:66–72. doi: 10.1016/0003-6870(78)90150-3. - DOI - PubMed
    1. Jay O, Brotherhood JR. Occupational heat stress in Australian workplaces. Temperature. 2016;3:394–411. doi: 10.1080/23328940.2016.1216256. - DOI - PMC - PubMed
    1. Tawatsupa B, et al. Association between heat stress and occupational injury among Thai workers: findings of the Thai Cohort Study. Ind. Health. 2013;51:34–46. doi: 10.2486/indhealth.2012-0138. - DOI - PubMed
    1. Ramsey JD, Burford CL, Beshir MY, Jensen RC. Effects of workplace thermal conditions on safe work behavior. J. Saf. Res. 1983;14:105–114. doi: 10.1016/0022-4375(83)90021-X. - DOI
    1. Hancock PA, Vasmatzidis I. Human occupational and performance limits under stress: the thermal environment as a prototypical example. Ergonomics. 1998;41:1169–1191. doi: 10.1080/001401398186469. - DOI - PubMed
    1. Parsons, K. Human Thermal Environments: The Effects Of Hot, Moderate And Cold Environments On Human Health, Comfort and performance. (CRC Press (2002).
    1. Nybo L, Secher NH, Nielsen B. Inadequate heat release from the human brain during prolonged exercise with hyperthermia. J. Physiol. 2002;545:697–704. doi: 10.1113/jphysiol.2002.030023. - DOI - PMC - PubMed
    1. Bain, A. R., Nybo, L. & Ainslie, P. N. Cerebral Vascular Control and Metabolism in Heat Stress. Comprehensive Physiology 1345–1380. 10.1002/cphy.c140066 (2015). - PubMed
    1. Nielsen B, Jessen C. Evidence against brain stem cooling by face fanning in severely hyperthermic humans. Pflügers Arch. 1992;422:168–172. doi: 10.1007/BF00370416. - DOI - PubMed
    1. Nybo L, Wanscher M, Secher NH. Influence of intranasal and carotid cooling on cerebral temperature balance and oxygenation. Front. Physiol. 2014;5:79. doi: 10.3389/fphys.2014.00079. - DOI - PMC - PubMed
    1. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000. J. Phys. D: Appl. Phys. 2005;38:2543–2555. doi: 10.1088/0022-3727/38/15/004. - DOI
    1. Feldmann A, Wili P, Maquer G, Zysset P. The thermal conductivity of cortical and cancellous bone. eCM. 2018;35:25–33. doi: 10.22203/eCM.v035a03. - DOI - PubMed
    1. Kohshi K, Konda N. Human auditory brain stem response during induced hyperthermia. J. Appl. Physiol. 1990;69:1419–1422. doi: 10.1152/jappl.1990.69.4.1419. - DOI - PubMed
    1. Piil, J. F. et al. High prevalence of hypohydration in occupations with heat stress—Perspectives for performance in combined cognitive and motor tasks. Plos One13 (2018). - PMC - PubMed
    1. Gaoua N, Herrera CP, Périard JD, El Massioui F, Racinais S. Effect of Passive Hyperthermia on Working Memory Resources during Simple and Complex Cognitive Tasks. Front. Psychol. 2017;8:2290. doi: 10.3389/fpsyg.2017.02290. - DOI - PMC - PubMed
    1. Marinaccio A, et al. Nationwide epidemiological study for estimating the effect of extreme outdoor temperature on occupational injuries in Italy. Environ. Int. 2019;133:105176. doi: 10.1016/j.envint.2019.105176. - DOI - PubMed
    1. Im E-S, Pal JS, Eltahir EAB. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 2017;3:e1603322. doi: 10.1126/sciadv.1603322. - DOI - PMC - PubMed
    1. Kjellstrom, T., Holmer, I. & Lemke, B. Workplace heat stress, health and productivity - an increasing challenge for low and middle-income countries during climate change. Glob Health Action2 (2009). - PMC - PubMed
    1. Ash C, Dubec M, Donne K, Bashford T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 2017;32:1909–1918. doi: 10.1007/s10103-017-2317-4. - DOI - PMC - PubMed
    1. Legatt, A. D. BAEPs in surgery. in Handbook of Clinical Neurophysiology vol. 8 334–349 (Elsevier (2008).
    1. Markand ON, et al. Effects of hypothermia on brainstem auditory evoked potentials in humans. Ann. Neurol. 1987;22:507–513. doi: 10.1002/ana.410220410. - DOI - PubMed
    1. Chiappa KH, Gladstone KJ, Young RR. Brain Stem Auditory Evoked Responses: Studies of Waveform Variations in 50 Normal Human Subjects. Arch. Neurol. 1979;36:81–87. doi: 10.1001/archneur.1979.00500380051005. - DOI - PubMed
    1. Jay O, Kenny GP. Heat exposure in the Canadian workplace. Am. J. Ind. Med. 2010;53:842–853. - PubMed
    1. Morabito M, Cecchi L, Crisci A, Modesti PA, Orlandini S. Relationship between Work-Related Accidents and Hot Weather Conditions in Tuscany (Central Italy) Ind. Health. 2006;44:458–464. doi: 10.2486/indhealth.44.458. - DOI - PubMed
    1. Modenese, A., Korpinen, L. & Gobba, F. Solar Radiation Exposure and Outdoor Work: An Underestimated Occupational Risk. Int J Environ Res Public Health15 (2018). - PMC - PubMed
    1. Otani H, Kaya M, Tamaki A, Watson P, Maughan RJ. Effects of solar radiation on endurance exercise capacity in a hot environment. Eur. J. Appl. Physiol. 2016;116:769–779. doi: 10.1007/s00421-016-3335-9. - DOI - PubMed
    1. Otani H, Kaya M, Tamaki A, Goto H, Maughan RJ. Exposure to high solar radiation reduces self-regulated exercise intensity in the heat outdoors. Physiol. Behav. 2019;199:191–199. doi: 10.1016/j.physbeh.2018.11.029. - DOI - PubMed
    1. Nielsen B, Kassow K, Aschengreen FE. Heat balance during exercise in the sun. Europ. J. Appl. Physiol. 1988;58:189–196. doi: 10.1007/BF00636625. - DOI - PubMed
    1. Ioannou LG, et al. Time-motion analysis as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers. Temperature. 2017;4:330–340. doi: 10.1080/23328940.2017.1338210. - DOI - PMC - PubMed
    1. Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J. Appl. Physiol. 1998;84:1731–1739. doi: 10.1152/jappl.1998.84.5.1731. - DOI - PubMed
    1. Lenzuni P, Capone P, Freda D, Del Gaudio M. Is driving in a hot vehicle safe? Int. J. Hyperth. 2014;30:250–257. doi: 10.3109/02656736.2014.922222. - DOI - PubMed
    1. Blatteis CM. Age-dependent changes in temperature regulation - a mini review. Gerontology. 2012;58:289–295. doi: 10.1159/000333148. - DOI - PubMed
    1. Kenney WL, Munce TA. Invited Review: Aging and human temperature regulation. J. Appl. Physiol. 2003;95:2598–2603. doi: 10.1152/japplphysiol.00202.2003. - DOI - PubMed
    1. Flouris AD, et al. Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31–70 years. Temperature. 2017;5:86–99. doi: 10.1080/23328940.2017.1381800. - DOI - PMC - PubMed
    1. Hessemer V, Brück K. Influence of menstrual cycle on thermoregulatory, metabolic, and heart rate responses to exercise at night. J. Appl. Physiol. 1985;59:1911–1917. doi: 10.1152/jappl.1985.59.6.1911. - DOI - PubMed
    1. Hirata K, et al. Effects of human menstrual cycle on thermoregulatory vasodilation during exercise. Europ. J. Appl. Physiol. 1986;54:559–565. doi: 10.1007/BF00943341. - DOI - PubMed
    1. Matsuda-Nakamura M, Yasuhara S, Nagashima K. Effect of menstrual cycle on thermal perception and autonomic thermoregulatory responses during mild cold exposure. J. Physiol. Sci. 2015;65:339–347. doi: 10.1007/s12576-015-0371-x. - DOI - PubMed
    1. Wittbrodt, M. T., Sawka, M. N., Mizelle, J. C., Wheaton, L. A. & Millard‐Stafford, M. L. Exercise‐heat stress with and without water replacement alters brain structures and impairs visuomotor performance. Physiol Rep6 (2018). - PMC - PubMed
    1. Sun G, et al. Hyperthermia impairs the executive function using the Attention Network Test. Int. J. Hyperth. 2012;28:621–626. doi: 10.3109/02656736.2012.705217. - DOI - PubMed
    1. Schlader ZJ, Lucas RAI, Pearson J, Crandall CG. Hyperthermia does not alter the increase in cerebral perfusion during cognitive activation. Exp. Physiol. 2013;98:1597–1607. doi: 10.1113/expphysiol.2013.074104. - DOI - PMC - PubMed
    1. Schlader ZJ, et al. Cognitive and perceptual responses during passive heat stress in younger and older adults. Am. J. Physiol.-Regulatory, Integr. Comp. Physiology. 2015;308:R847–R854. doi: 10.1152/ajpregu.00010.2015. - DOI - PMC - PubMed
    1. Racinais S, Gaoua N, Grantham J. Hyperthermia impairs short-term memory and peripheral motor drive transmission. J. Physiol. 2008;586:4751–4762. doi: 10.1113/jphysiol.2008.157420. - DOI - PMC - PubMed
    1. Simmons SE, Mündel T, Jones DA. The effects of passive heating and head-cooling on perception of exercise in the heat. Eur. J. Appl. Physiol. 2008;104:281–288. doi: 10.1007/s00421-007-0652-z. - DOI - PubMed
    1. Piil JF, Mikkelsen CJ, Junge N, Morris NB, Nybo L. Heat Acclimation Does Not Protect Trained Males from Hyperthermia-Induced Impairments in Complex Task Performance. Int. J. Environ. Res. Public. Health. 2019;16:716. doi: 10.3390/ijerph16050716. - DOI - PMC - PubMed
    1. Christiansen L, et al. Progressive practice promotes motor learning and repeated transient increases in corticospinal excitability across multiple days. Brain Stimulation. 2018;11:346–357. doi: 10.1016/j.brs.2017.11.005. - DOI - PubMed
    1. Ramanathan NL. A new weighting system for mean surface temperature of the human body. J. Appl. Physiol. 1964;19:531–533. doi: 10.1152/jappl.1964.19.3.531. - DOI - PubMed

Aucun commentaire:

Enregistrer un commentaire